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ELASTIC CONSTANTS FOR BENDING AND TWISTING OF
CORRUGATION- STIFFENED PANELS*

By W. Jefferson Stroud

SUMMARY

Theoretical formulas for five orthotropic elastic constants associated with
pure bending and pure twist are presented for a corrugation-stiffened panel. The
constants are the bending stiffnesses parallel to and normal to the corrugation
direction, the twisting stiffness, and the Poisson's ratios assoclated with
bending. The formulas are given in terms of the dimensions of the corrugation
pattern for the general case of different corrugation and cover-plate materials.
Bending stiffnesses measured on panels with three different corrugation patterns,
and twisting stiffnesses measured on panels with two different patterns, compare
favorably with the theoretical results.

INTRODUCTION

A type of structural panel used in the skin of the X-15 and having potential
use for the skin of hypersonic aircraft and reentry vehicles consists of a corru-
gated metal plate attached to one side of a flat metal plate. Such a panel may
be thought of as a plate stiffened by corrugations and is referred to in this
report as a corrugation-stiffened panel. This type of stiffened panel is easy to
fabricate and for those applications where the primary load-carrying function
requires a high bending stiffness in one direction, it provides an efficient use
of the material. Its main disadvantage is that the bending stiffness in the
other direction is extremely small. Thus it may be susceptible, in some applica-
tions, to undesirable effects such as panel flutter.

In order to predict the structural characteristics of a corrugation-
stiffened panel (its panel-flutter characteristics as well as its load-carrying
ability), information is needed about the elastic constants of the panel. These
constants define the resistance of a loaded panel to deformation. As discussed

*Part of the information presented herein was included in a thesis entitled
"The Bending and Twisting Stiffnesses of Corrugation Stiffened Panels" submitted
in partial fulfillment of the requirements for the degree of Master of Science
in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia,
June 1962. :
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in reference 1, in which corrugated-core sandwich panels are considered, the con-
stants include two transverse shear stiffnesses DQx and DQy’ two bending stiff-

nesses Dx and Dy, a twisting stiffness Dxy, two stretching moduli Ex and
Ey, a shearing modulus ny, two Polsson's ratios uy and My associated with
bending, and two Poisson's ratios p'y and u'y assoclated with stretching.

In the present paper the five elastic constants associated with pure bending
and pure twist, Dy, Dy, ny, My, and Wy, are considered. Formulas are given

for these five constants in terms of the dimensions of the corrugation pattern
for the general case of different corrugation and cover-plate materials. Theo-
retical values of Dy, Dy, and ny are compared with experimental values for

three corrugation patterns. For each specimen tested, the cover-plate material
was the same as the corrugation material.

SYMBOLS
A area enclosed by corrugation cell
a,b,d,eq,
€2,851,3,K, dimensions of corrugation pattern (see fig. 2)
n,p,ry,ro,
¥,0
C1,CpsC3 constants in solution of differential equation in appendix D
3
D plate stiffness per unit width, Et 5vs in-1b
12(1 - u )
DX,Dy bendling stiffnesses per unit width of a beam cut from orthotropic
panel in x- and y-directions, respectively, in-1b
ny twisting stiffness of unit-width and unit-iength element cut from
orthotropic panel, with edges parallel to x- and y-axes, in-1b
Dy' beam bending stiffness in y-direction per unit width for segment
of panel of length 2b (defined in eq. (B19))
Dy" beam bending stiffness in y-direction per unit width for segment
of panel of length 2a (defined in ea. (B27))
E Young's modulus, 1b/sq in.
G shear modulus, 1b/sq in.
H quantity associated with shape of corrugation (defined by eq. (B12))
I moment of inertia per unit width, in.”?



area moment of inertia per unit wldth of cross section, in.?

I

J torsion constant per unit width of cross section, in.3

K curvature in x-direction

M moment per unit width, in-1b/in.

My ,My resultant bending-moment intensities in x- and y-directions,
respectively, in-1b/in.

Mky resultant twisting-moment intensity with regard to x- and
y-directions, in-1b/in.

n integer

P in-plane load per unit width acting on corrugation and cover plate
at weld line, 1b/in. (see figs. 13 and 15)

Ty radius of curvature in y-direction, in.

s coordinate measured along center line of sheet making up corrugation
cell, in.

t thickness, in.

U strain energy due to bending, in-1b

U, v, Wp displacements in x-, ¢—, and radial directions of middle surface of

a cylinder, respectively

vl(¢),wi(¢) functions arising from integrations (see egs. (D9) and (D10),

respectively)
W displacement in z-direction, in.
X quantity associated with shape of corrugation (defined by eq. (B1lk))
b4 coordinate, measured parallel to corrugation direction, in.
y coordinate, measured parallel to cover plate and perpendicular to

corrugation direction, in.
Z coordinate, measured perpendicular to cover plate, in.

z distance from outer surface of cover plate to neutral axis of
segment of length 2a, in.

7 xg shear strain, in./in.

5 extension of elements



Subscripts:

strain, in./in.

angular coordinate for elements BC and DE; from B to C for ele-
ment BC, from D to E for element DE, radians (see fig. 13)

Poisson's ratio of material

Poisson's ratios associated with curvature in y-direction caused
by My loading and with curvature in x-direction caused by My

loading, respectively

Poisson's ratio in x-direction for segment of panel of length 2b
(defined by eq. (D52))

Poisson's ratio in x-direction for segment of panel of length 2a
(defined by eq. (D55))

distance measured along element CD, in. (see figs. 13 and 15)

guantity associated with material and shape of corrugation
(defined in eq. (D43))

stress, 1b/sq in.

angular coordinate measured clockwise from the vertical, radians
(see fig. 15)

quantities assoclated with shape of corrugation (defined in
egs. (D41l) and (D49))

refers to corrugation

experimental

refers to plate to which corrugation is welded
theoretical

refers to x-direction

refers to y-direction

refers to g-direction

refers to clrcumferential direction

refers to extensions in y-direction of elements AB,BC,. . . EF,
respectively



THEORETICAL RESULTS

The bending and twisting elastic constants used herein are defined in the

follow%ng pure-bending and pure-twisting relationships (see, for example,
ref., 2):

The directions for My, My, and Myy -
and, consequently, the directions for
Dy s Dy, and ny - are indicated in
figure 1. The stiffnesses Dy, Dy,
and ny are associated with the
resultant moments My, My, and Mxy:

respectively. When the transverse shear
stiffness 1s assumed infinite, the dif-
ferential equation for lateral deflec-
tions of an orthotropic panel consistent

: - Figure 1.- Typical corrugation-stiffened
Wwith these definitions of the elastic panel.

constants is

D 4 L D 4

—x_ Sw,ofp s tytx o, By ot o,y P,y 82w+2ny P

1- pgty dxb 1-uly)3x23y2 1= HyHy oyt 32 3y2 3x Oy

where

q lateral load, 1b/sq in.

Nx,Ny intensities of resultant normal force acting in x- and y-directions,
respectively, lb/in.

Nxy intensity of resultant shearing force in xy-plane, lb/in.

Derivations of theoretical expressions for the three stiffnesses Dx, Dy,
and ny and the Poisson's ratios py and Hy for cross-section shapes of the

type shown in figure 2 are outlined in appendixes A, B, C, and D for the general
case in which the cover-plate material and corrugation material are different.
For easy reference, results for the case in which the cover-sheet and corrugation
material are the same are given by the following expressions:



For the bending stiffness in the x-direction:
Dy = ET (1)

where E 1is the Young's modulus of the panel material,
= _o|(atb)tpd /(. t (a+i)tc5 2 3(6 , sin 26
T = 1_)[__12_L+ y- —22 a+b)tp+ +(el+ rl) (a+i)to+ tery (§+_E._

3 2
+ 2tcelrlesin 6+ elzrletc + % kJsin20 + k;—g— cos2e + (tp-!- e +j+= k sin 0 - y) kte

1 gt 2
+ tcr23(%+u1)+ﬁ) +2toeproCsin 6+ epCrobto+ 13 + (e2 +r2) tcg:l (2)
and
te rysin 6 te . n- j _}
T(b+a)+ =) (a+i)te + (tp+ S 411 - —5—|r10tc+ (tp+ 5+ J + 52kt
t rosin 6 t )

+ <1:P+—29+d - rp+ S )rgetc + (tp +-2£+d)g;t:C
- _L i
v = tp(b+a) + (atl)te + 70t +kt, + roft. + gte

(3)

All the symbols on the right-hand sides of equations (2) and (3) are dimensions
shown in figure 2.

In particular, note from figure 2

that ¢
e 25 —=
o \ [ Sttt
_ = ! =0 if single w ine) |~ !
el—y- I‘l+tp+? () ’f il: 9 -Za-]l
T
(5) et 5/ A\
=d - + + : M \ & & ‘"'
e2 (rl r2 el) “Neutral g g EZ \ / # \
axis N /)
j= rl(l - cos 8) (6) ’ _2;_.
=4 - I‘2(l - cos 0) (7) Figure 2.~ Dimensions of corrugation
cell.

Throughout this report, the subseript c¢ refers to the corrugation and the
subscript p refers to the plate to which the corrugation is attached.



For the bending stiffness in the y-direction:

—_—_a+b 8
Py _Q% + ;ET 8)
Dy" Dy
where

Dy = (% + Dp) (l - uxuy) (9)

E(tp + tc)5
D" = 1 - 10
y 12{1 - |J_2 ( p-xl-’-y) ( )

In equations (9) and (10), p is the Poisson's ratio of the panel material,

B0
Do = < (11)
12{1-@5
Bt
Dy = P (12)
12(1 - p2
and
2 . k2 .
X=1+ (rl +-xébe +k+g- Hry (6 - sin 8) + jk + = sin 6
+ re(ne - rp0 cos 8 + rp sin 9) + gé] (13)
where
2(o 'e)+°k+1£'e+ 0 - r-0 cos 6 + T sin9)+d
. Ty - sin 3 %~ sin re(n -5 > g
rl3<%? -2 sin 06 + Ei%r£@> + jgk + jkgsin 0 + %? sine + r2n26 - 2nr226 cos 6
: r23 . 2
+ 2nr2251n e + —5-(39 - 3 sin 6 cos 6 - 20 51n26) + gd
(14)

The quantities py and My are defined subsequently but the product HxHy is
usually small compared with unity and can be neglected in the calculation of Dy'
and Dy".



For the twisting stiffness:

Dy

y = %_ (15)

where G 1s the shear modulus of the panel material and

o

2
5 6(t0+ tp) + dEo+g-i+ (r2~ rl)tan %:l +2(r2 - r22)tan %4—(1”22_1«12)%
J = . - — - (16)
b, 1
%;+EE_+ 9(r1+r2)+k+g:|

For Polsson's ratio associated with curvature in the y-direction caused by
My loading:

_ PUyy +oap
Hx = v v a

(17)

where

2
po X+

and

Z=p(ifeqy + r + rieq sin 6 + r.2sin 6 cos 0 + cot © ey + ry cos @ 2
1 1 1-1 1 2] 1 1
-(e, + v, cos 82| - roe, sin 6 - r,2sin 6 s 0 + bly EB
(2 2 ) 22 -2 co 'g(ee rg)‘ Y- 35
(19)

For Poisson's ratio associated with curvature in the x-direction caused by
My loading, the following relationship, which can be derived from the theorem of

reciprocity (ref. 3), is used:

2y (20)

In the derivation of equations (1) and (15), the panel was considered to
be made up of a series of cells or thin-walled tubes. In addition, for equa-
tion (15), the angle of twist of each corrugation element was considered to be
equal to the angle of twist of the panel as a whole.



EXPERIMENTAL VERIFICATION OF THEORY

General

The values of Dx’ Dy’ and ny were determined experimentally for three

corrugation patterns — the small vee, the large vee, and the square — shown in
figure 3. A total of nine panels were tested. Fach panel had a nominal depth
of 1/2 inch. The small-vee corrugation had a nominal pitch of 1/2 inch; the
large-vee and the square corrugations
each had a nominal pitch of 1 inch.

The variation in depth and pitch for a
specimen did not exceed x4 percent
except for the edge corrugations.

Some of the panels were fabricated of
ATST type 347 stainless steel; others
were fabricated of Inconel X. Spot
welds of approximately 0.2-inch spacing
were used to join the corrugated plate
to the cover plate. Both the small-vee
and the large-vee corrugations had sin-
gle weld lines; the square corrugation
had a double weld line as indicated in
figure 3. The materials and average
dimensions of all the test panels are
given in table I. (The values of E
and p for type 347 stainless steel

& were obtained from ref. 4. The values
of E, G, and p for Inconel X were
obtained from ref. 5.)

(b) Nooar
2 In order to assess the importance

. weld of Poisson's ratio in the determina-
10 ”és tion of the measured bending stiff-
a ness, Poisson's ratios e and Hy

were calculated for the test panels by
using equations (17) and (20). These
values are tabulated in table II.

-——|-—-=
%
s
—_—— — — <

ke
§=90° Note that the product ux”y is less

5

] than 3 X 10~2 for all the test panels,
J tg, ) Since small values of this product are
typical of corrugation-stiffened
panels, elementary beam theory can be
(e) Small vee; ry = rp = 0.05". used in the calculation of stiffnesses
(v) Large vee; ry = rp = 0.14", from measured deformations of the panel,

(c) Square; ry = rp = O".

Figure 3.- Corrugation shapes.
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o
~—



TABLE I.- AVERAGE DIMENSIONS OF EACH TEST PANEL

Test |Corrugation| p, a, i, g, };,7 4, Ty, ] r;, 7 79,7 to, | tes v,
panel pattern in. in. in. in. in. in. in. in. | deg in. | in. in,
AISI type 347 stainless steei: -E = 28.6 X 106; u = 0.30
Small vee [0.5290(0 0 0 0.4512|0.4900(0.0543| 0.0543|68.79]0.0150 |0.0150 |0.1862
Dx Large vee [1.000 |0 0 0 45981 .4700] .1380| .1380{52.18! .0150 | .0150 | .1543
: Square 1.000 | .1120( .1390| .2490| .483%0| .4830(0 0 90.00| .0150 | .0150 | .1772
Inconel X: E = 31.0 x 10%; @ = 11.0 x 10%; u = 0.29
Small vee |0.5000|0 o] 0 0.4601[0.5040]0.0520{0.0520|T70.73|0.01064| 0.01064 |0.1900
Dy Large vee |1.000 (0O 0 0 bkl LL750] L1450| L1450(53.26| .01068| .01065| L1514
Square .9930| .1150| .1330| .2k88] .5063| .5063|0 0 90.0 | .01067| .01054| .1812
Small vee |0.5020{0 0 0 0.4555(0.49810.0520[0.0520|70.37]0.0106 |0.0106 |0.1869
Dxy | rarge vee |1.006 |0 0 0 As07| Lh750| L1b50| J1b50(52.95| L0106 | .0L06 | .1513
Square L9960 .1060| .1375| .2545| .4960| .L4960(0 0 90.00| .0106 | .0106 | .1795
TABLE II.- CALCULATED VALUES OF POISSON'S RATIOS FOR EACH TEST PANEL
Test panel - Corrugation pattern Hyx Hy _ HyHy
Small vee 0.141 7.70 x 1072 1.08 x 1072
Dy Iarge vee .156 15.2 2.38
Square 175 8.41 1.k
Small vee : 0.130 3.16 x 1077 0.413 x 1077
Dy Large vee .17 7.00 1.02
Square .169 3.65 616
Small vee 0.131 3,30 x 1072 0.434 x 1072
Dyy lLarge vee L1h7 7.0k 1.04
Square .168 3.77 : 632

Experimental Verification of Formula for Dx

Specimens.- The three specimens — one with each of three corrugation
patterns — used for the evaluation of D, were beams approximately Lk inches

long and approximately 6 inches wide with corrugations parallel to the long
dimension. Each specimen was fabricated of type 347 stainless-steel sheet
which had an average thickness of 0.0150 inch with a variation in thickness of

12 percent,

Test apparatus and procedure.- The test setup with pertinent dimensions is
shown schematically in figure 4. A photograph of the apparatus with specimen
is shown in figure 5. The beam was supported on two knife edges and loaded at
the ends so as to obtain a region of pure bending moment between supports. The
supports were 28.47 inches apart, and loads were applied with lead shot in
increments of about 5 pounds to a maximum of about 60 pounds. Deflections of
the beam were measured at the locations shown in figure 4 with dial gages
having a sensitivity of 0.0001 inch. In order to take advantage of this high

10




sensitivity, each dial gage was fitted
1=6.00" 12600, with a screw with which the extension of
— L=28.47" te——r the gage spindle could be adjusted until
A_%f ' it just touched the surface of the beam.
.LELA l _-Diol gage This positive screw action eliminates the
3 Q) Q) @ |F effect of the internal friction of the
‘ e 5 : dial gage and gives better repeatability
it of deflection measurements. Contact was
detected by an electric circuit which

v

Figure 4.~ Schematic diagram of test setup
‘used for measuring Dy.

L-61-4007
Figure 5.- Typical specimen and test setup used in the experimental determination of D,.

activated an electron-ray tube. The electric detecting technique is similar
to that described in reference 6.

The bending stiffness Dy Wwas calculated from the following formula obtained
from elementary beam theory for a uniform beam subjected to a constant moment:

_ (F1)xg(L - xg) (21)
2cws

Dy

11



where

F load applied at each end of beam, 1b
1 distance between load and support, in.
Xg distance from left support to any station, in.
L distance between supports, in.
Vg deflection at station xg, in.
c width of beam, in.
Equation (21) was applied at three stations: Xg = %, %, and %%. The three

values thus obtained differed from one another by less than 2 percent in any test;
the average of the three values was taken as Dx. (This procedure is similar to

that used in ref. 1.)

Discussion of results.- A comparison of the experimental and theoretical
values of Dy for the three corrugation patterns are as follows:

For the small vee,

(Dx)exp = 42,220 + 200 in-1b
(Dx)¢, = 42,230 in-1b

For the large vee,
(Dx)exp = 30,170 * 120 in-1b

(Dx)yy = 30,280 in-1b

For the square,
(Dx)exp = 52,850 * 490 in-1b

(Px)gn = 51,720 in-1b

As might be expected, the results of the tests for Dy compare very favorably
with the theoretical values. The theoretical value of Dx fell within the range

of experimental values for both the small-vee and the large-vee corrugation pat-
terns. The theoretlical value of Dy for the square corrugation pattern fell

outside the experimental range by less than 2 percent (being slightly lower than
the lowest experimental value).

12



Experimental Verification of Formula for Dy

Specimens.- The three panels used to determine the experimental values of
Dy were 32 inches long and 6 inches wide. In this case the corrugations were

normal to the long dimension of each panel. ZFach specimen was fabricated of
Inconel X sheet which had an average thickness of about 0,0106 inch and s varia-
tion in thickness of t3% percent. These test specimens are shown in figure 6.

Figure 6.- Three specimens used in vibration tests for measuring Dy.

Test apparatus and procedure.- Vibration tests were performed on three
panels in order to determine the experimental values of Dy. Each panel was

hung by 8-foot-long nylon cords attached at the first-mode nodal points located
22 percent of the panel length from each end. This arrangement approximated
free-free boundary conditions and is shown schematically in figure 7. The panels
were vibrated with an air shaker (ref. 7), a noncontacting inductance pickup was
used to detect the deflections, and a recording oscillograph with a paper speed
of 7.5 inches per second was used to obtain frequencies and maximum amplitudes.

For each panel, several natural frequencies were obtained from which values

of Dy could be calculated with the use of the following equation:

2
D., = (.ED_> (22)

13



.---Nylon cord

PN

Air shaker

Vibration
pickup

Figure 7.- Test setup used for
measuring Dy.

patterns are as follows:

For the small vee,

Recording
system

where

o] mass per unit length of panel,
1b-sec? fin.?

w, natural frequency of nth mode of
vibration of a panel,
radians/sec

Bn a characteristic number from beam-
vibration analysis (numerical
values of B, were obtained
from ref. 8)

c width of panel, in.

Equation (22) is the frequency equation
for beam vibration in which the beam
stiffness has been replaced by the

quantity ch.

Discussion of results.- Comparisons
of the experimental and theoretical

values of Dy for the three corrugation

(Dy) oxp = 8.73 to 9.36 in-1b

(Dy) oy = 853 in-1b

For the large vee,

(®5) exp

= 11.12 to 11.69 in-1b

(Dy) en = 11.26 in-1b

For the square,

(5) ey

= 9.89 to 10.83 in-1b

(Dy) ep = 9-39 in-1b

The experimental and theoretical values of Dy are also shown in figure 8.

1L

>
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2 As shown 1n this figure, the experimen-
SUD SR AP SUpin Supi R e - tal values of Dy for a particular

o a panel varied with frequency. However,
o= o c each of the values of Dy was repeat-

) o able within l% percent. Over most of

sl the frequency range, the theoretical

values of Dy are conservative, those

for the square corrugation being the
6l most conservative.

Theory  Experiment

- —_——— o Small vee
——————— v Large vee

—-— o Square Experimental Verification of

oy, in-lb

L Formula for ny
2r- Specimens.- Each specimen used for

the evaluation of ny was fabricated

of Inconel X sheet which had an average
T T e 80 3o thickness of about 0.0106 inch with a
Frequency, cps variation in thickness of 3 percent.
As in the tests for Dy and Dy, the
Figure 8.- Experimental and theoretical

values of Dy. three specimens tested represented the
small-vee, the large-vee, and the square
corrugation patterns. The panels were
about 18 inches square.

As was pointed out in reference 3, when testing sandwich panels to deter-
mine torsional stiffness, the deformation must be restricted to pure twist.
This restriction means that the panel must deform in such a way that normals to
the middle plane remain normal; that 1s, no transverse shear deformation can be
allowed. This same requirement applies to corrugation-stiffened panels, and it
implies the need for two restrictions on the edges of the panel:

(1) The edges must remain straight.

(2) Each element of the edge cross section in the xz- or yz-plane must
rotate through the same angle (the angle of twist of the panel).

For restriction (1), the two edges parallel to the x-axis are kept straight
during testing by the corrugations running parallel to the x-axis. In order to
keep the other two edges straight, it was necessary to attach aluminum plates
along the edges of the panel parallel to the y-axis. These edge plates were
sufficiently thin so that their torsional stiffness was negligible in comparison
with that of the panel. The edge plates were attached to the panels with screws
cast into plastic extending into the ends of the corrugation cells about 5/& inch.
The screws were inserted through holes in the edge plates, and nuts were mounted
on the screws to allow the plates to be tightened against the corrugation cells.
The tightness of these nuts in some cases plays a significant role in the achieve-
ment of restriction (2), and this role is discussed in detail in a subsequent

15



section entitled "Discussion of Results."
The three panels with screws cast in the
corrugations and aluminum edge plates

are shown in figure 9.

Test apparatus and procedure, - The
panels were supported at diagonally
opposite corners, and an aluminum rod
was suspended from the other two cor-
ners. Ioads were applied by adding lead
shot to a bucket hanging from the center
of the aluminum rod.

Nine dial gages having a sensitivity
of 0.0001 inch were used to measure the
twist of the panel. The electrical sys-
tem of measuring deflections noted in the
section entitled "Experimental Verifica-
tion of Formula for D," could not be

used here because of the instability of
the panel on its supports. When the
electrical technique was used, small dis-
turbances, such as dial gage contact and
Figure 9.- Specimens (including edge vibrations, caused the panel to rotate
plates) used to measure Dyy. slightly about the line connecting the
two supports during individual dial-gage
readings. However, when all the dial
gages made contact with the panel at the same time, the panel was stabilized and
did not rotate while the dial gages were being read. The forces applied by dial-
gage contact were nevertheless negligible. TFigure 10 shows a typical specimen
and test setup used in the torsion tests.

Loads were applied in 5-pound increments up to a maximum of 25 pounds.
Deflections of the panel were measured at the nine points shown in figure 11.
From the measured deflections, which were linear across the panel in the x-

2

ox 9y

was computed. The

and y-directions, the angle of twist per unit length

twisting stiffness was then obtained from the formula

My

=X (23)
azw/éx oy

Dyy

where the twisting moment Mxy is equal to one-half of the torque divided by
the width of the cross section resisting the torque, or, equivalently, Mxy
is equal to one-half of the load acting at each corner. (See ref. 3.)

16
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Figure 10.- Typical specimen and test setup used for measuring ny.

17



Discussion of results.- Comparisons
of the experimental and theoretical val-
ues of ny are as follows:

For the small vee,

(ny)exp = 5,125 £ 50 in-1b

(ny)th = 4,749 in-1b

For the large vee,

(ny)exp = 5,837 £ 13 in-1b

Figure 1l.- Location of dial gages on _ T
torsion specimens. ny th 5;95)4- in-1b

For the square,

(ny)exp = 5,750 in-1b

(ny)th = 6,24 in-1b

For the small-vee corrugation pattern the theoretical result is conservative by
7 percent, and for the large-vee pattern the difference between theory and experi-
ment is less than 2 percent.

A more thorough discussion is required in order to understand the results of
the tests on the square corrugation pattern. The stiffness measurements on the
vee-shaped corrugations were essentially independent of whether the nuts on the
edge-plate mountings were tight or loose. TFor the square corrugation pattern,
on the other hand, large variations in the apparent torsional stiffnessl were
measured and depended on the tightness of the nuts. For instance, in tests in
which the edge-plate connections were loose, values of the apparent torsional
stiffness as low as 2,900 in-1b were cbtained on the square corrugation specimen.
The experimental value reported above, 5,750 in-1b, was obtained from a specimen
having tight edge-plate connections and having screws cast in every cell, rather
than in every other cell as shown in figure 9.

The square pattern falls into a category of shapes for which special pre-
cautions must be taken to comply with restriction (2) discussed under "Specimens.
The flat portion between the corrugation cells appears to be significant in this

n

lSince ny is a stiffness associated with a deformation which conforms to

restrictions (1) and (2) stated in the section entitled "Specimens," a measured
stiffness based on overall deformations which do not conform to the restrictions
is referred to as the "apparent"” value of Dyy-.

18



regard. Under torsional loads the defor-
mation of the flat portion may be par-
tially independent of the deformation of
the cells. The panel as a whole, there-
fore, may have a larger angle of twist

than the individual cells. This situa- \ / \ / \
tion is illustrated in sketch 1 of a N N N
typical cross section of a panel having

a flat portion between cells. The dashed Sketch 1.

outline denotes the undeformed shape and

the solid outline denotes an exaggerated deformed shape emphasizing the possible
difference in behavior between the flat portions and the cells. With the dial-
gage techniques used in this investigation, 1t is likely that angle C) is meas-

ured although the cells rotate only through the smaller angle C).

The edge plates provided a reasonably effective means for eliminating the
independent action just discussed. The connections between the panel and edge
plates were such that nuts could be used to tighten the edge plates against the
corrugation cells. When the connections were tight, rotation of the edge plates
forced the cells having connections to rotate also, but, because of unavoidable
slippage, not necessarily through the same angle as the edge plates. This slip-
page, even when the connections were tight, may account for the fact that the
experimental value of ny for the square corrugation specimen was 9 percent

lower than the theoretical value.

Since the stiffness measurements on the panels with the vee-shaped corruga-
tions were not affected by the degree of tightness of the edge plates, it
appeared that additional experimental information on the influence of flat por-
tions between the cells could be obtained by testing a panel consisting of
alternating vee-shaped corrugations and flat portions. Consequently, a panel was
tested which had a cross-section configuration as indicated in sketch 2. The

external dimensions of this panel were
similar to those of the other panels

__1 %" r____q"____1 used in the torsion tests. The result
¥ b 1 of this test was that the apparent tor-
Y H - i sional stiffness with connections loose
“\\\\\d///,“\ /w\\\\\////( ¥ was about three-fourths of the apparent
Yy /| torsional stiffness with connections
\__Rows of spot welds tight. This result substantiates the

idea that the partially independent
action of the flat portions and the
cells is an important factor in the tor-
sional behavior of corrugation-stiffened panels which have a flat portion between
corrugation cells.

Sketch 2.
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CONCLUDING REMARKS

This report presents theoretical formulas for five orthotropic elastic con-
stants associated with pure bending and pure twist for a corrugation-stiffened

The constants are the bending stiffnesses parallel to and normal to the

panel.
corrugation direction (Dx and Dy ), the twisting stiffness (ny), and the

Poisson's ratios associated with bending (“x and py). Theoretical values of

Dy, Dy, and ny are compared with experimental results for three corrugation
patterns — two vee shapes and a square shape — and generally showed good agree-
It is shown that for corrugation-stiffened panels typical of practical

ment.
is very small compared with unity.

construction, the product “x“y

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., November 21, 1962.
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APPENDIX A

DERIVATION OF FORMULA FOR Dy

The panel bending stiffness Dy 1is simply the bending stiffness per unit
width of a beam having the cross-sectional shape shown in figure 2. When the
panel is considered to be made up of a series of cells and the contributions of
each element of the cross section are totaled, the following equation 1s obtained:

2
Dy = 2Ep .(%)ﬁ’z + (i - Eg‘?’) (a + b)tp| + 2§c l_(a. * D)ted + (el + rl>2(a + 1i)te

p L 12

+ tcr13<g- + §i—1i—29-> + 2tcelr12sin e + elzrletc + % kJsine + cos

2
-t .
+ (tp +£+3+Esine - :7) Kt + tcr25<% + ﬁr-lh—ai> + 2t,esro®sin 8

el

3

where

[" n

2
t to _ te ry sin @
g—z —g—-(b +a)+ (tp+?>(a+l)tc+ (tp+?+rl- ——é—>r19tc

te ... n-3j te ro sin © te

_ Ag)
o (

B tp(b+a) +(a+1)tc+1r10t,+kte +1p0t, +8te

<
"
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APPENDIX B

DERIVATION OF FORMULA FOR Dy

A single cell of a corrugation-stiffened panel under pure bending is shown
in figure 12(a). As indicated, each cell must carry the total bending moment My

applied to the panel. 1In this derivation, the term "plate" refers to the flat
cover plate to which the corrugation is attached and the term "panel" refers to
the composite structure. At the weld line, where the plate is joined to the cor-
rugation, the moment is distributed to the corrugation and to the plate in pro-
portion to their respective stiffnesses. The plate and the corrugation are now
treated as separate structures each having its own force system and deformation
as shown 1n figure 12(b). The curvature in the x-direction resulting from M.y

is considered to be zero. The forces

M "
<;==£__f__—ﬁ:;> and deformations are related in the
M t) following way:

==p i P%
(b)

(1) The slopes of the plate and
corrugation are equal at the weld line.

(2) The extensions of the plate

(a) Undeformed (b) Loads and and corrugation are equal at the weld
composite cell deformations of .

with My loading. cell components. line.

Figure 12.- Loading on corrugation cell. (3) The moment carried by the cor-

rugation plus the moment carried by the
plate equals the moment carried by the panel; that is,

Me + My = M, (B1)

(4) The slope at the weld line for each element is the same as the slope of
the panel which is determined by Dy and My.

(5) Equal and opposite (in-plane) loads P act at the weld line. Symmetry
and overall equilibrium of the plate or corrugation normal to the panel dictate
that no normal forces act at the weld line.

The corrugation is analyzed first. The bending strain energy U caused by
the loads P and moments M, is computed. The slopes and extensions caused by

bending are then obtained by taking the appropriate partial derivatives of the
strain energy. The strain energy is calculated from

U= 2 f (Moment ) 2ds (B2)
2D,

where D. 1is the plate bending stiffness of the corrugation materisl, and the
integration is taken over the corrugation cross section. In equation (B2),
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D. rather than (EI) is used because the bending is considered to be cylin-

drical, that is, B ; = 0. If the corrugation is divided into elements AB, BC,
ox '
CD, DE, and EF, as shown in figure 13, the contribution of each corrugation
element to the strain energy is given

d l by the following equations for the case
I 'y | in which the panel has only a single
° 1a ( 0)
---Weld line —] we a = :
P/ —=
. b Al 8 |

For element AB,

i
1 f 2
| U = ==— M dy (B3)
2Dc 0 ¢

For element BC,

- U——f E« - Pr (1 - cos 9)]r 6

Figure 13.- One-half of a single-weld-
line-type corrugstion cell (B).;)
(appendix B).

For element CD,

- d B
2Dc f [M P(3 + & sin 9)] 3 (B5)
For element DE,
2
0
= %- . (Mc - P {n + 1, Eos(e - 8) - cos 9]} T, a8 (B6)

For element EF,

1 g 2 (
U=.é.D_\/;(Mc-Pd)dy BT)



Expanding, integrating, and totaling these contributions gives

_ 1 2 2 2 2. 35(28 sin 26
U—E{Mci+rlMce—2McPrl(9-sin6)+Prl(—2——2sine+__h_.

2 5
+ M2k - 2PM, (,jk +E s1n e) + P2<j2k + Jk%sin 6 + 155— sin26> + roM,20

- 2:2M5P(n9 - rof cos B + rp sin B) + r2P2l;29 - 2nrpf cos € + 2nrp sin 6

2
+ =830 - 3 sin 0 cos ¢ - 20 Sing@)] + M.Pg - 2M.Pgd + Pzgdg} (38)

According to Castigliano's theorem, the slope of the corrugation at the weld

line 1s given by - %%; where the sign is determined from the coordinate system

Mpbd
Dy

and, because of the weld, is equal to the slope of the corrugation at the weld
line. Thus,

shown 1in figure 13. The slope of the plate at the weld line is given by -

Mo _ U
Dy |

2
= D-L-Mci + rM.0 - Pr12(6 - 8in 8) + M.k - P(jk + ]%. sine)
c

+ roMa.0 - rgP(ne - rof cos 8 + ro sin 9) + Mog - Pg%] (B9)

Another equation can be obtained by equating the extensions of the corruga-
tion and plate at the weld line. In this analysis, only the corrugation exten-
sion caused by bending 1s considered and the plate extenslion is neglected. This
assumption seems Jjustified because extensions caused by direct strains in the
plate are of the same order of magnitude as the extensions caused by direct
strains in the elements of the corrugation. The direct strains in the corruga~
tion elements are negligible compared with the bending deformations. However,
when the depth d of the corrugation is small, the extensions caused by direct
stralns have to be considered.
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7

ou

The extension of the corrugation at the weld line is given by 5

Equating the extensions of the corrugation and plate at the weld line gives

2
u_ 1 -rzM(e-sine)+Pr3(2-2sine+§1ri-?3>-M jk+k—sine)
3 D, 1 1c 1\2 n c 2
2 4+ sxPsin 0 + X sin M _(no 0 0 in 8
+ P{j k + jk sin = sin - r M. (n® - ro6 cos 8 + r, sin

2
r 2
+ rEPEEG - 2nr,® cos 8 + 2ur, sin @ + %(39 -3 sin 6 cos 0 - 20 sin e)

- Mogd + Pgd®

=0 (B10)

Grouping the coefficients of P and M. vylelds

P = HMc (B11)
where
r,2(8 sin6)+jk+kgsi o + no 8 cos 8 + T, sin 8) + gd
S S 5 sin 1'2( - Tpo co 2 ) g
3
3(30 _ sin 26 2 2 k-7 2 2
rl<2 251n9+———1+ +,jk+jksine+351ne+r2n9

5
T
- 2nr22e cos 6 + 2nr22sin o + %(36 - 3 gin B cos B - 28 sinze) + gd2

(B12)
Substituting HM. for P in equation (B9) gives
_¥Dp
Mp =355, % (B13)
where
X=:L+9(rl+r2>+k+g-H[r12(9- sin 68) + jk
+ K sin o+ ) ) o+ 1e)+d (B1k)
s~ sin rz(n - r0 cos ry sin g
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If the expression given in equation (B13) is substituted for MP in the
equation

Mc+Mp=My

the result is

+ 22 4.
M, (1 55g x) My (B15)
Because the curvature in the x-direction is considered to be zero, the moment-
curvature relationship for the panel 1is
D 2
My =~ y o (B16)
1 - bxiy oy

By considering é;% to be constant and by substituting the expression for

M, given by equation (B15) into equation (B16), the slope of the panel at the
weld line is given by

oW
oy

M v=b bDe ﬁ;T

_Mc<l + 22 x> b (1 - uxuy) (B17)

Equating the slopes of the corrugation and panel at the weld line gives

Mo Dp b
DzX—Mcl+mXDT(l-pxuy) (B18)
where Dy' is the bending stiffness per unit width of the panel if the dimen-
sion a equals zero, that is for the case in which the panel has a single weld
DI
line instead of a double weld line. Equation (B18) can be solved for if—z:;a—
- y
to glve
Dy' bDea
= +
el Sl (819)

For the case in which the panel has a double weld line, the dimension a
does not equal zero, and the segment of length 2a has to be considered. This
segment is treated as a composite beam. The location of the neutral axls for
such a beam is as follows (see ref. 9):
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ot
N
b=

] t
2. E_:(tp + e
(B20)
+

C

where 2z 1s the distance from the outer surface of the plate to the neutral
axis as shown in sketch 3.

The bending strain €y at a distance =z

f & ; from the neutral axis is given by
P4
Neutral axis i - = -— fI‘ ey = .fZ_ (321)
£ l y
L 20 ]
r 1 where ry is the radius of curvature in
Sketch 3.

the y-direction.

Again, when bending is considered to be cylindrical, the bending strain e

equals zero. Therefore, with the use of Hooke's law and equation (B2l), the
bending stress in the y-direction is given by

oy = —Ez (B22)
_ u2
(1 - w)zy
The normal stresses distributed over the ends of the segment must produce
couples equal to the applied moment, or
E-tp z
My = f 0,2z dz + f opz dz (B23)
Z-tp-tc z—tp
where o, 18 the stress in the y-direction acting on the corrugation and 9p is

the stress in the y-direction acting on the plate.

Substituting equation (B22) into equation (B23) and using the appropriate
values of E and p gives

E 2- z
My= __C_ tp zzdz-g-_.i_ 1

2
zdz|=— (B24)
1 - pe? Z-tp-te 1- u132 z-tp Y

By comparing equation (B24) with the well-known moment-curvature relationship
for cylindrical bending of isotroplc plates, that is

= D
M, e (B25)
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the bending stiffness of the segment between weld lines can be defined as

D " E Z- z
S ¢ p z2dz + T

1-bdty 1-p2 Yoty -t 1 - pp?

z2dz (B26)
E-tp

where Dy" is the bending stiffness per unit width of a beam cut from the seg-
1

I

1 - uxpy

ment. of length 2a. After performing the integration, is given as

"

Ec ( 3 2 2 =2 . =y 2
= tc + Btptc + Btp tc + 5Z tc - 6thtc - BZtC
L -y 3(1 - pe?)

Ep

b) - 2 =2

For the case in which the cover-plate materisl is the same as the corruga-
tion material,

" 3
Dy"  _ E(te + tp) (B28)
1- gty  12(1 - p2)

The change 1n slope between the end and the center of the segment of length 2a
is given by

Mya(lD;j'qu—lz) (529)

The change in slope between the weld line and the center line of the corrugation
cell 1is

Myb (1 - pxug

; (B30)
Dy

The total change in slope between the center of the segment of length 2a and the
center line of the corrugation cell is the sum of expressions (B29) and (B30):

My<Dy.é,,. + ]T:T)(l - uxuy) (B31)
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Dividing expression (B31l) by one-half the pitch gives the change in slope
per unit length. Since the change in slope per unit length is alsc equal to

My(1 -
Y( uxpy),_there results

M M
Yy _ Y a b
W = m(__“. + ]');T) (B32)

The bending stiffness Dy is then glven by

a +

o’

Dy = (B33)

a

b
TR

Y

where Dy" 1s given by equation (B27) or (B28) and Dy' is given by equa-

tion (Bl9). It is shown in appendix D that for a corrugation-stiffened panel,
the product pxpuy 1is usually small compared with unity and can be neglected in

the computation of Dy' and Dy".
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APPENDIX C

DERIVATION OF FORMULA FOR Dxy

It was mentioned in the body of this report that a corrugation-stiffened
panel might be considered as a series of cells. Each of these cells has the
torsional rigidity GJ of a thin-walled tube. The torsion-twist relationship
for a thin-walled tube is given by

T = GJB; (c1)
where
T total torque on a cell
GJ total torsional rigidity of a cell
8, angle of twist per unit length of a cell

The torsion-twist relationship can also be expressed as

T = GJo, (c2)

where the bars indicate that the quantities T and GJ are divided by the width
of the cross section considered.

The torsion-twlst relationship for an orthotropic panel is

Mey = Dxy —ya,af"y (c3)

The torque per unit width T is considered to act on only two edges of a rectan-
gular orthotropic panel whereas, to be consistent with the differential equation
for lateral deflections, the twisting moment Myy is considered to act on all
four edges. Therefore, for the same deformation to take place, the torque per
unit width T must equal twice the twisting moment Mxy. A comparison of equa-
tions (C2) and (C3) then yields

GJ
Dy = == ch
Xy > (ck)
where
— 2
GJ = ——&A———— = Torsion constant per unit width of cross section (from Bredt

P sg ds theory, see ref. 10)
Gt (c5)
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in which

A area enclosed by corrugation cell
(see sketch 1)

E
ds elemental length along center line e _
of sheet meking up corrugation
cell

\+_+
t thickness of sheet associated T2,
with ds

Sketch L.
P pitch of corrugetion pattern

The integral is taken along the center line of the corrugation cell. The

shear modulus G 1is retalned inside the integral to account for the possibility
of different materials for the plate and corrugation. The area A 1s glven by

A= b(tc + tp) + d[b +g-1+ (r2 ~ rl)ta.n%] + 2(r12 - rge)tan -g— + <r22 - r12)e

(co)
The integral along the center line of the corrugation cell is given by
ds 2b 2 (
85 - 22 4+ = (1 + 7.0 + 10 + k + g) (cT)
Sﬁ‘ Gt ~ Gptp Gt 1 e

Substituting equations (C5) to (C7) into equation (C4) glves

ny=

ol olél

2
{b(tc+tp) +dE>+g-i + (rz-rl)ta.n %] +2 rlE-rQE)tan %+(r22- rlE)e}

G
b P
= o (1 +1r10+ 10 +k+ g)

(c8)
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APPENDIX D
DERIVATION OF FORMULAS FOR up, AND Hy

For small deformations, py may be defined as the ratio of the panel curva-
ture in the y-direction to the panel curvature in the x-direction when the moment
My 1is the only locading on the panel. The definition of Hy 1s obtained by
interchanging x and y in the definition of uy. Just as in the case of iso-
tropic plates, these definitions of uy and hy are applicable only when the
deformations are small.

An expression for uyx 1is obtained by use of a method which has some similar-
ities to that used in the derivation of Dy. Consider a rectangular corrugation-
stiffened panel and assume the plane x = 0 passes through the center of the
panel. (See fig. 1.) A moment My 1s assumed to be applied to the panel and
ylelds a curvature K 1n the x-direction. The curvature in the yz-plane, which
is Independent of x, 1s calculated and this curvature divided by K 1is the
Polsson's ratio px. In order to calculate the curvature in the yz-plane due to
My, the corrugation and plate which comprise the panel are first considered to be
separated at the weld lines and to act independently. The axial-strain distribu-
tion caused by My 1s applied to the corrugation and plate, and their deforma-
tions are calculated at x = 0. It is found that redundant forces and moments
are necessary to match up the extensions in the y-direction and the slopes in the
yz-plane at the weld lines. These forces and moments are also determined by the
use of Castigliano's theorem as was done in the derivation of Dy. The other

bending Poisson's ratio Ky can be determined from the relation %X = %5- which
X

can be derived from the theorem of reciprocity. (See ref. 3.) 7

Deformation of Corrugation

A moment My acting on the corrugation, figure 14(a), is assumed to give a
linear strain distribution ex as shown in figure lh(b). If the corrugation

and plate are separated, moments M and loads P act at the weld line as shown
in figure 14(c). The corrugation, which is considered to have a single weld line
at present, is analyzed first. Figure 15 gives the dimensions of the corrugation
cell and divides the cell into elements AB, BC, CD, DE, and EF. For all elements,
the axial strain € 1s considered to be uniform through the thickness t, or

tp and equal to the axial strain of the middle surface of the element. The
deformation of the corrugation caused by the axial strain €x 1s now considered.

Element AB.- The axial strain ey in element AB is given by

ex = -K(e1 + 11) (p1)
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(a

(c)

NeutrA

axis

)

) x = Kz

(a) Undeformed composite
cell with My 1loading.

(b) Strain distribution
resulting from M.

(c) Loading at weld line
and deformations of
cell components.

Figure 1lh.- Loading on corrugation

cell.

b - b
}---Weld line
M, l-—/'
p 7 Ia Bl ? |
\

y =
l ~--Neutral axis
z
2
-~
3 F
—
Figure 15.- One-half of a single-weld-
line-type corrugation cell
(appendix D).
where K 1is the primary curvature

resulting from Mx' Considering o

to be zero and using the stress-strain
relations for plane stress gives

€y = Kpc(el + rl) (D2)
The extension of element AB in the
y-direction is then given by
8y = Kipc(el + rl) (D3)

Element BC.-~ Element BC is analyzed
as a sector of a cylinder deformed by a
uniform axial load and a bending moment.
Coordinates and displacements are shown
in sketch 5.

)
W,
4 \\V
o}
e
&
Neutral axis l _—
Sketch 5.
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The strain-displacement relationships for element BC are

€x = %% (D)
1 ov Vr (D5)

1l ou, ov (D6)

The strain ey 1s given by
€x = —K(el + ry cos ¢) (o7)

Thus, from equstion (D4)

u = _Kx(el + r] cos ¢) + £(8) (D8)

At x =0, u = 0; therefore, £(g) = 0.

With the assumption of Txg = 0, equations (D6) and (D8) give

v = vl(¢) - K%g sin @ (D9)

where vl(¢) is an arbitrary function of ¢ only. Since all strains are

assumed to be functions of ¢ only, examination of equations (D5) and (D9) leads
to the conclusion that wy must be of the form

v, = wi(@) - Egé cos @ (p10)

where wj(@#) 1s an arbitrary function of @ only. Since of = Mg = 0 at §=0
and @ = 8, it can be shown from the equations of equilibrium that ag = M¢ =0

everywhere in this element. This information provides two relations from which
expressions for vl(¢) and wy(@) can be obtalned. By using o = O and the

stress-straln relations for plane stress, there 1s obtained

e¢ + Heex = 0 (D11)
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and substituting for ej and ey from equations (D5) and (D7), respectively,
yields

19 w =
= 5% - F% - ucK(el + r{ cos ¢) =0 (p12)

Substituting the formulas for v and wy from equations (D9) and (D10), respec-
tively, into equation (D12) gives the first relation:

ov W
1 1 1
S = - = _ K +r =0 D1
ry a¢ ry He (el 1 ¢os8 ¢) ( 5)
The second relation i1s obtained from M¢ = 0 and from the moment-curvature

relation

Mg = -De(Xg + he¥y) = O (D1k)
where
_ 1 [y, v
X¢ ;I§<%5 + B¢2 > (D15)
Xy = 22;'1' | (D16)

Substituting equations (D15) and (D16) into equation (D14) gives

2 2,
LBVJ,B"r):_ iy D17
r12<§a >¢° He 32 (017)

Again using equations (D9) and (D10) for v and wp, respectively, yields the
second relation:

1 (o1 _ Kx@
ot -

cos @ + Bewl + Kx2 cos > = oK cos ¢ (D18)

d¢2 2

d
Substituting the formula for 5%1 from equation (D13) into equation (D18) gives

—lE-wl + ucrlK(el + r] cos ¢) + Bzwl = uK cos § (p19)

Ty a¢2
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or

Bzwl
o

+ Wy = -perikKep (D20)

When equation (D20) is solved for wy and the result is substituted into equa-
tion (D10), the following equation results:

2
wp =c] sin @ + cp cos B - periKe; - K%— cos ¢ (D21)

Similarly, using the solution to equation (D20) in conjunction with equa-
tions (D13) and (D9) yields

2
Vv = -cj CcOS @ + co sin g + pcKrlgsin g - 5%— sin ¢ + c3 (D22)

where c¢j, c¢p, and cz are arbitrary constants representing rigid-body dis-
placements in the x = 0 plane. The quantities of interest in this analysis are
the relative rotation of one end of element BC with respect to the other end in
the x = 0 plane and the extension of the element in the y-direction in the

x = 0 plane. These quantities can be obtained by ignoring rigid-body displace-
ments. By setting c¢; = cp = Cz = X = 0 1in equations (D21) and (D22), it can be

seen that there is no relative rotation of the ends of the element; that is,
g%E = 0.
=0

The extension of the element in the y-direction is

8p = -(sin 8)w + (cos 8)v (D23)

r ¢=e ( ) ¢=e

x=0 x=0

or
_ . 2.4 )
8o = periKep sin 8 + pcKri“sin 6 cos © (D2k)
Element CD.- The axlal strain in element CD 1s given by

€y = Kz (D25)

By considering the in-plane stress in the g-direction to be zero (cg = O) and by
using the stress-strailn relations for plane stress, there results

€ = -pcKz (D26)
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The total elongation in the &-direction from point C to point D is given Dby

D
B = j; e dt (D27)

The extension in the y-direction is given by

55 = 5§ cos © (D28)

or

K 2 2
Bz = E%— cot Blgel + r] cos 9) - (e2 + rp cos 9) ] (D29)

Element DE.- The equations for v and wy for the lower arc (element DE)
are similar to those of the upper arc (element BC). The only differences are the
substitutions of -e, for e; and r, for ry. Angle @ is measured from the
same reference line as for the case of the upper arc. Displacement wpy 1is posi-

tive toward the center of curvature of element DE. When rigid-body displacements
are lgnored,

2

Wp = poroKes - Kg— cos ¢ (D30)
2 Kx= .

v = poKro©sin @ - =5~ sin 1) (D31)

As before, the relative rotations of the ends of the element are zero. The
extension in the y-direction 1s given by

8), = -(sin 6)w + (cos 8)v D32)
)-l- r ¢=6+3t ( ) ¢=6+7t (
or
B = -HeToKep sin 8 - p Krp2sin 8 cos @ (D33)

Element EF.- The axial strain for element EF is given by
If oy 1is considered to be zero,

ey = -pcK(ez + q% (D35)
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The extension ds of element EF is then given by

55 = -p.ch<82 + 1‘2) (D36)

Analysis of Redundant ILoads and Moments

In order for the corrugation and plate to have equal slopes and extensions
at the weld line, equal and opposite redundant moments M and loads P act at
the weld line. The deformations caused by these loadings are considered to be
independent of the deformations caused by the linear strain distribution e,.

The extension of the corrugation in the y-direction caused by moments M and

loads P 1s given by ég, where U 1is the strain energy of the corrugation due

oP
to bending. An expression for %% is given by equation (B10).

The total extension of the corrugation B, is given by

5
Be = Z B + g—g | (D7)

n=1
The extension of the plate BP is given by
;.

Equating the extensions of the corrugation and plate at the weld line gives

6
ouU
+ = =0 D
g B + S5 (D39)
=1
where
5 y .
6 = -0p = Tppr vy - = (Dko)
If, in equation (B10), M. 1is replaced by M then %% can be expressed as a
linear combination of M and P as follows:
ou 1 :
[o18 +
P —C-(AM oP) (Dk1)
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where -A 1is the numerator of H and & 1s the denominator of H. (See
eq. (Bl2).) '

Let

i 5, = K& (Dk2)

where

5= iuc(el + 1) - 8uc(ep + r2) + perie; sin 6 + pcrlesin 6 cos 6

cot ©
+ EE_??__— Kél + ry cos 6)2 - (e2 + ry cos 9)%] - HeTpeo sin O

2sin 6 8 (3 - P (D43)
- MTp®sin 8 cos B - upbly - = 3

Upon substitution of equations (Dikl) and (D42) into equation (D39), the following
equation is obtained:

K = -]—)];—(AM + @P) | (Dhk)
or

P =—P-C-Ig<—bf—"‘ﬂ (Dk5)
Since % = -H, equation (D45) becomes

P = _P%IE + EM (DL6)

Inasmuch as the deformation caused by the linear strain distribution due to
Mx makes no contribution to the slope, the slope of the corrugation at the weld

line (relative to the slope at the center line of the cell) is given by -%ﬁ
where a counterclockwise rotation i1s considered positive. An expression for
%% is given by equation (B9) by replacing M. by M. The slope of the plate

at the weld line is given by %ﬁ. Equating the slopes of the corrugation and

plate at the weld line gives

oU _ _Mb
il (D7)
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From equation (B9), %ﬁ can be expressed as a linear combination of M and P

as follows:

QU = L(oM + AP D48
U - o + 10) (049)
where
Q=1+8(rp +rp)+k+g (pho)
Substituting the formulas for P and %% from equation (D46) and equa-

tion (D4T), respectively, into equation (Di8) yields

1 DoKX Mb
=—|OM + A|- + HM|| = === D50
o o[22 1] - -
Solving equation (D50) for E%_ gives
iy
Mo AZf (D51)
Pp EE(Q + AH) + b
De
Equation (D51) can be simplified by noting that ‘% = -H and from equation (Blk4)
 + AH = X. Since K%_ is the ratio of anticlastic to primary curvature, equa-
b

tion (D51) determines uy if the panel is of the single-weld-line type. For the

purpose of distinguishing this type from a double-weld-line type, the Poisson's
ratio given by equation (D51) is designated uy7; that is,

_-H% (D52)

p’Xl =DP

—X+b
De

where H, X, and X are given by equations (B12), (D43), and (B1k4),
respectively.

If the panel is constructed with a double weld line, the segment between
weld lines must be considered. (See fig. 2.) The extension of one-half the
cover plate between weld lines is given by

t, + t
ppxa<el by _BT_) (p5)
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The extension of one-half the corrugation between weld lines 1s given by

HeKa(ey + ry) (D5k4)

The curvature of this section is simply the difference between the extensions of
the plate and the corrugation divided by the distance between the center lines
of the plate and corrugation and by the distance a. The ratio of this curva-
ture to K 1s designated pyo and is

(Hp - Be)(e1 * T1)

— (D55)

The ratio of anticlastic curvature to primary curvature for the entire panel is
then

_ b“xl + aly o
b + a

Hx (D56)

where u,; and p,, are given by equations (D52) and (D55), and a and b are

dimensions shown in figure 2. By using the reciprocity theorem for elastic
structures, Ky is obtained as follows:

W/

y = by 5% (D57)

For a corrugation-stiffened panel, the ratio of Dy to Dy 1is usually very
small so that Ry is very small. Although p, may not be small compared with
unity, the product HxHy is usually small compared with unity. For example, the
product HxHy 1s less than 3 X lO'5 for the test panels considered in this
report (see table II).
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